UNIT-II

Fourier series

The representation of signals over a certain interval of time in terms of the linear combination of orthogonal functions is called Fourier series. It is applicable for only periodic signals.

Dirichlet's Conditions: for the Fourier series to exit for a periodic signal, it must satisfy certain conditions

- 1. The function x(t) must be a single values function.
- 2. The function x(t) has only a finite number of maxima and minima.
- 3. The function x(t) has a finite number of discontinuities.
- 4. The function x(t) is absolutely integral over a period, that is $\int_0^T x(t) dt < \infty$.

Classification of Fourier series:

Three important classes of Fourier series methods are available. They are

- 1. Trigonometric form
- 2. Exponential form
- 3. Cosine form

1. Trigonometric form of Fourier series:

A periodic function x(t) of period T can be represented as

$$x(t) = a(0) + \sum_{k=1}^{\infty} a(k) \cos kwt + \sum_{k=1}^{\infty} b(k) \sin kwt$$

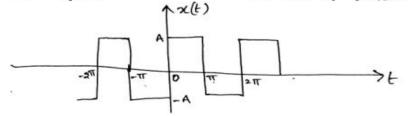
Where a(k) and b(k) are constants and a(0) is DC component.

$$a(0) = \frac{1}{T} \int_{0}^{T} x(t) dt$$
$$a(k) = \frac{2}{T} \int_{0}^{T} x(t) \cos kwt dt$$
$$b(k) = \frac{2}{T} \int_{0}^{T} x(t) \sin kwt dt$$

Note:

- If x(t) has even symmetry, then b(k)=0 & a(0) and a(k) are to be evaluated.
- If x(t) has odd symmetry, then a(k)=0 and a(0)=0 & b(k) is to be evaluated.
- If x(t) has half wave symmetry, then a(0)=0 and only Odd harmonics exist. e^{jkwt}

Obtain The trigonometric Fourier sories for the wave form



Solution: the given signal x (t) = {A o < t < TT 4 to=0 the given signal x (t) = {A TT < t < 2TT 4 to+T = 2

the waveform has odd symmetry. So a(0)=0, a(k)=0 and $b(k)=\frac{4}{T}\int_{0}^{T_{2}}x(t) \operatorname{sinkwt} dt = \frac{4}{2\pi}\int_{0}^{\pi}A \operatorname{sinkt} dt$ $=\frac{2A}{h\pi}\left[1-(-1)^{h}\right]$ $b(k)=\begin{cases} 4A/n\pi & \text{for odd} \\ 0 & \text{for even } n \end{cases}$

the trigonometric Fourier series is

$$\pi(t) = \alpha(0) + \underbrace{\mathcal{E}}_{k=1}^{\infty} \alpha(k) \operatorname{Cosk} + \underbrace{\mathcal{E}}_{k=1}^{\infty} b(k) \operatorname{Sink} \psi t$$

$$\pi(t) = \underbrace{\mathcal{E}}_{K=odd}^{\infty} \frac{4A}{K\pi} \operatorname{Sink} t = \underbrace{\frac{4A}{TT}}_{h=odd} \underbrace{\mathcal{E}}_{h=odd}^{\infty} \frac{1}{t^{\alpha}} \operatorname{Sink} t$$

$$\pi(t) = \underbrace{\frac{4A}{Tt}}_{Tt} \operatorname{Sint} + \underbrace{\frac{4A}{3\pi}}_{TT} \operatorname{Sin3t} + \underbrace{\frac{4A}{5\pi}}_{TT} \operatorname{Sin5t} + \cdots$$

2. Exponential form of Fourier series:

A periodic function x(t) of period T can be represented as

$$x(t) = \sum_{k=-\infty}^{\infty} X(K) e^{jkwt}$$

Where

$$X(K) = \frac{1}{\tau} \int_0^T x(t) e^{-jkwt} dt$$

3. Cosine form of Fourier series:

A periodic function x(t) of period T can be represented as

$$x(t) = \sum_{k=1}^{\infty} C(k) \cos(kwt + Q(k))$$

Where $Q(k) = \tan^{-1}[b(k)/a(k)]$

$$C(k) = \sqrt{a^2(k) + b^2(k)}$$

Find The Exponential Fourier series for the Rectified site wave

The given signal
$$x(t) = A$$
 since $0 \le t \le 1$. $\omega = \sqrt[2]{\pi} = \pi$
 T
 $x(0) = \frac{1}{\tau} \int_{0}^{\tau} x(t) dt = \frac{1}{\tau} \int_{0}^{1} A$ since $dt = \frac{2A}{\pi}$
 $x(k) = \frac{1}{\tau} \int_{0}^{\tau} x(t) e^{-Sk\omega t} dt$
 $= \frac{1}{\tau} \int_{0}^{1} A$ since $e^{-Sk\omega t} dt$
 $= \frac{1}{\tau} \int_{0}^{1} A$ since $e^{-Stw t} dt$
 $= \frac{A}{\tau} \int_{0}^{1} \left[e^{3\pi t} - \frac{S\pi k t}{\tau} - \frac{S\pi t}{\tau} - \frac{2}{\tau} \right] x(k) = \frac{2A}{\pi}$

the Exponential Fourier Series is

Properties of Fourier series

b) Linearity:
If
$$x(t) \stackrel{F.S}{\leftarrow} x(k)$$
 and $y(t) \stackrel{F.S}{\leftarrow} y(k)$
then $z(t) = a x(t) + b y(t) \stackrel{F.S}{\leftarrow} a x(k) + b y(k)$
Proof:
 $Z(k) = \frac{1}{T} \int z(t) e^{-jk\omega t} dt$
 $z_{T>} = \frac{1}{T} \int (a \cdot x(t) + b \cdot y(t) \int e^{-jk\omega t} dt$
 $= \frac{1}{T} \int (a \cdot x(t) + b \cdot y(t) \int e^{-jk\omega t} dt$
 $= a \cdot \int x(t) e^{-jk\omega t} dt + b \cdot \int y(t) e^{-jk\omega t} dt$
 $= a \cdot \int x(t) e^{-jk\omega t} dt + b \cdot \int y(t) e^{-jk\omega t} dt$
 $\leq T>$
 $\therefore Z(k) = a \cdot x(k) + b \cdot y(k)$

Properties of fourier series:
9 Linearity:
If
$$x(t) \in S x(k)$$
 and $y(t) \in S y(k)$
then $z(t) = a x(t) + b y(t) \in S a x(k) + b y(k)$
Proof:
 $Z(k) = \frac{1}{T} \int z(t) e^{-jk\omega t} dt$
 $z(k) = \frac{1}{T} \int [a \cdot x(t) + b \cdot y(t)] e^{-jk\omega t} dt$
 $z(k) = \frac{1}{T} \int (a \cdot x(t) + b \cdot y(t)] e^{-jk\omega t} dt$
 $= \frac{1}{T} \int (a \cdot x(t) + b \cdot y(t)] e^{-jk\omega t} dt$
 $= \frac{1}{T} \int (a \cdot x(t) + b \cdot y(t)] e^{-jk\omega t} dt$
 $= \frac{1}{T} \int (a \cdot x(t) + b \cdot y(t)] e^{-jk\omega t} dt$
 $= \frac{1}{T} \int (a \cdot x(t) + b \cdot y(t)] e^{-jk\omega t} dt$
 $= \frac{1}{T} \int x(t) e^{-jk\omega t} dt + b \cdot y(t) e^{-jk\omega t} dt$
 $\therefore Z(k) = a \cdot x(k) + b \cdot y(k)$
2) Time, Shifting:
If $x(t) \in E \cdot x(k)$
 $= z(t) = x(t + t) e^{-jk \cdot x(k)} e^{-jk\omega t} dt$
 $z(t) = x(t + t) e^{-jk \cdot x(k)} e^{-jk\omega t} dt$
Let $t \cdot t = t_0 = m$
 $dt = dm$.
 $z(k) = \frac{1}{T} \int x(m) e^{-jk\omega t} dm$
 $= \frac{1}{T} \int x(m) e^{-jk\omega t} dm$
 $= \frac{1}{T} \int x(m) e^{-jk\omega t} dm$

replace m by t.

$$\therefore z(k) = \left(e^{-jk\omega t_0} \right) \stackrel{!}{=} \int z(t) \cdot e^{-jk\omega t} dt$$

$$= e^{-jk\omega t} \chi(k)$$

$$\therefore z(k) = \chi(k) e^{-jk\omega t_0}$$

(3) Frequency Shift:

If X(k) is a fourier coefficient of x(t) then

Proof:

(

$$Z(\mathbf{k}) = \frac{1}{T} \int_{\langle T \rangle} \chi(\mathbf{k}) e^{j\omega\mathbf{k}_{0}t} - j\omega\mathbf{k}t dt$$
$$= \frac{1}{T} \int_{\langle T \rangle} \chi(\mathbf{k}) e^{-j(\mathbf{k}-\mathbf{k})\omega\mathbf{k}t} dt$$
$$Z(\mathbf{k}) = \chi(\mathbf{k}-\mathbf{k}_{0}) \int_{\langle T \rangle} \chi(\mathbf{k}) = \frac{1}{T} \int_{\langle T \rangle} \chi(\mathbf{k}) e^{j\omega\mathbf{k}t} dt$$

Proof.
$$\chi(k) = \sum_{\substack{k=-\infty \\ dt}}^{\infty} \chi(k) e^{just k}$$

$$\frac{d \chi(k)}{dt} = \frac{d \chi(k)}{dt} \chi(k) e^{just k}$$

$$\frac{d x(t)}{dt} = \sum_{k=-\infty}^{\infty} [x(k), jk\omega] e^{j\omega kt}$$

$$\frac{dx(t)}{dt} \xrightarrow{FS} x(k), jk\omega$$

(5) Convolution in time:
If
$$x(t) \notin F.S. x(k)$$
, $y(t) \notin S. y(k)$ then
 $z(t) = x(t) * y(t) \notin F.S. T. x(k). y(k)$
Proof: $Z(k) = \frac{1}{T} \int x(t) * y(t) = \int x(r). y(t-r) dr$
In the above eq., $x(t) * y(t) = \int x(r). y(t-r) dr$
 $Z(k) = \frac{1}{T} \int x(r) y(t-r) e^{-icwt} dt dr$
Interchanging the order of integration

$$Z(k) = \frac{1}{T} \int_{T}^{1} x(T) \int_{T}^{1} y(t-T) e^{jk\omega t} dT dt$$

$$Let t-T=m$$

$$t = T+m$$

$$dt = dm$$

$$Z(k) = \frac{1}{T_{2}T} \int_{T}^{1} x(T) \int_{T}^{1} y(m) e^{jk\omega (T+m)} dT dm$$

$$= \frac{1}{T} \left[\int_{T}^{1} x(T) e^{-jk\omega T} dT \int_{T}^{1} y(m) e^{jk\omega m} dm \right]$$

$$= \frac{1}{T} \left[\int_{T}^{1} x(T) e^{-jk\omega T} dT \int_{T}^{1} y(m) e^{jk\omega m} dm \right]$$

$$= \frac{1}{T} \left[\int_{T}^{1} x(T) e^{-jk\omega T} dT \int_{T}^{1} y(m) e^{-jk\omega t} dt \right]$$

$$= \frac{1}{T} \left[(T \cdot x(k) \cdot T \cdot y(k)) \right] x(k) = \frac{1}{T} \int_{T}^{1} \frac{1}{T} e^{-jk\omega t} dt$$

$$(T \cdot x(k) \cdot T \cdot y(k)) = \int_{T}^{1} \frac{1}{T} e^{-jk\omega t} dt$$

(6) Time Scaling:
If
$$x(t) \in FS$$
 X(K) then
 $Z(t) = x(att) \in FS$, $Z(K) = X(K)$
Proof: $X(K) = \frac{1}{T} \int x(t) e^{-jWKt} dt$
 $x(t)$ is a periodic then $Z(t) = x(att)$ is also
periodic.
If 'T' is the period of $x(t)$ then period of
 $Z(t)$ will be $\frac{1}{a}$.
Similarly, the frequency of $x(t)$ is we then the
frequency of $Z(t)$ will be aw.
 $Z(K) = \frac{1}{Ta} \int x(att) e^{-jKawt} dt$

$$= \frac{a}{\tau} \int x(at) e^{jK(atus)t} dt$$

$$= \frac{a}{\tau} \int x(at) e^{jK(atus)t} dt$$

$$= \frac{a}{\tau} \int x(m) e^{jK(atus)t} dm$$

$$= \frac{a}{\tau} \int x(m) e^{-jK(atus)t} dt$$

$$= \frac{a}{\tau} \int x(t) e^{-jK(atus)t} dt$$

$$= \frac{a}{\tau} \int x(t) e^{-jK(atus)t} dt$$

(7) parseval's theorem : (power)

If x(t) is the periodic power signal with fourier coefficient x(k) then average power in the signal \dot{w} given by: $\sum_{\substack{P=2\\K=\infty}}^{\infty} |x(k)|^2$ $P = \sum_{\substack{K=\infty\\K=\infty}}^{\infty} |x(k)|^2$ $P = \frac{1}{11} \int_{12}^{12} |x(t)|^2 dt$ $P = \frac{1}{11} \int_{12}^{12} |x(t)|^2 dt$ $= \frac{1}{11} \int_{12}^{12} |x(t)|^2 dt$

o(l) can be expressed as

$$\begin{aligned}
\mathbf{x}(\mathbf{t}) &= \sum_{k=-\infty}^{\infty} \mathbf{x}(\mathbf{k}) e^{\mathbf{i}\mathbf{t}\mathbf{i}\mathbf{i}\mathbf{k}\mathbf{t}} \\
\mathbf{x}^{*}(\mathbf{t}) &= \sum_{k=-\infty}^{\infty} \left[\mathbf{x}(\mathbf{k}) e^{\mathbf{i}\mathbf{t}\mathbf{i}\mathbf{k}\mathbf{t}} \right]^{*} \\
\Rightarrow \mathbf{x}^{*}(\mathbf{t}) &= \sum_{k=-\infty}^{\infty} \mathbf{x}^{*}(\mathbf{k}) e^{\mathbf{i}\mathbf{t}\mathbf{i}\mathbf{k}\mathbf{t}} \\
\mathbf{x}^{*}(\mathbf{k}) &= \sum_{k=-\infty}^{\infty} \mathbf{x}^{*}(\mathbf{k}) e^{\mathbf{i}\mathbf{t}\mathbf{k}\mathbf{t}} \\
\end{aligned}$$

Substitute eq. (2) in eq.(1)

$$P = \frac{1}{T} \int_{T_{2}} \chi(t) \left(\frac{f}{K_{2}} \times \chi^{*}(K) e^{j(t)K_{2}} \right) dt$$

Interchange the order of integration and Summation

$$P = \frac{1}{T} \left(\sum_{k=+\infty}^{\infty} \chi^{*}(k) \int_{1,0}^{T_{1}} \chi(t) e^{j(\omega)t} dt \right)$$
$$= \frac{1}{T} \left(\sum_{k=-\infty}^{\infty} \chi^{*}(k) \mathcal{Y} (k) \right)$$
$$= \sum_{k=-\infty}^{\infty} \left[\chi^{*}(k) \mathcal{X}(k) \right]$$
$$P = \sum_{k=-\infty}^{\infty} \left[\chi(k) \right]^{2}$$

(8) Symmetry Properties:

(

If $\chi(t)$ is real then $-\chi^*$ $(k_2 = \chi(-k_2)$ If $\chi(t)$ is imaginary then $\chi^*(k) = -\chi(-k_2)$ If $\chi(t)$ is real and even then imaginary of $\chi(k_1) = 0$ If $\chi(t_2)$ is real and 'odd then real of $\chi(k) = 0$